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Introduction

Gaussian-Softmax Distribution

Method FID 10K↓ Precision↑ Recall↑

SketchDNN (Ours) 7.80 0.246 0.266

SketchDNN (Pos) 10.26 0.230 0.245

Latent Diffusion 93.34 0.134 0.033

SketchDNN (Cat.) 148.93 0.117 0.028

Vitruvion 16.04 0.294 0.176

Method Bits/Sketch↓ Bits/Primitive↓

SketchDNN (Ours) 81.33 5.08

SketchDNN (Pos.) 83.03 5.18

SketchDNN (Cat.) 106.10 6.63

Vitruvion 84.80 8.19
SketchGen 88.22 8.60

2D sketch/blueprint design is a tedious and manual aspect of CAD modelling that is an 
ideal domain for generative AI. 

Prior solutions have relied on tokenization and autoregressive approaches, which can’t 
accommodate both the heterogeneous parameterizations nor permutation invariance of 
primitives. 

We propose a novel discrete diffusion method that addresses these limitations through 
superposition and permutation invariant denoising. Our contributions are namely:

The first data-space diffusion model for CAD sketch 
generation

A novel discrete diffusion framework based on the 
Gaussian-Softmax distribution

State-of-the-art results in terms of NLL, FID, and 
Recall

We introduce the Gaussian-Softmax distribution (𝒢𝒮) as a continuous relaxation of the 
Categorical distribution, where if 𝒚 ∼ 𝒩 𝛍, 𝜎2𝑰  then 𝒙 = softmax 𝒚 ∼ 𝒢𝒮 𝛍, 𝜎2𝑰  with 
pdf:
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The support of the 𝒢𝒮 distribution is the entire probability simplex, unlike the Categorical 
distribution whose support is only its vertices, which enables 𝒙 to encode uncertainty.

Discrete Diffusion

Forward: 𝒙𝑡 = softmax 𝑏𝑡 log ෥𝒙0 + 1 − 𝑏𝑡 𝛜  ∼ 𝒢𝒮 𝑏𝑡 log ෥𝒙0 , 1 − 𝑏𝑡 𝑰

 

Reverse: 𝒙𝑡−1 = softmax
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Thus, when entropy is maximized at the end of the forward process, the class label 

follows the uniform distribution i.e., argmax 𝒙𝑇 ∼ 𝐶𝑎𝑡
𝟏

𝐷
. To avoid singularities near 

𝑡 = 0, we slightly label smooth 𝒙0 so that: ෥𝒙0 = 𝑘𝒙0 +
1−𝑘

𝐷
𝟏 where we set 𝑘 = .99 
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Variance Schedule Augmentation

In Gaussian-Softmax diffusion, we observed that variance schedules cannot be used directly 
as-is, due to the distortion introduced by the softmax operation on the injected noise. To rectify 
this, we propose the following variance schedule augmentation:

𝑏𝑡 =
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which ensures that the class label is noised according to the chosen schedule 𝑎𝑡 i.e.,  

argmax 𝒙𝑡 ∼ 𝐶𝑎𝑡 𝑎𝑡𝒙0 + (1 − 𝑎
𝑡
)
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Raw Schedule Augmented Schedule

• Heterogeneous Primitive Parameterizations
• We represent each primitive as a superposition 

(probabilistic mixture) of all primitive types. 

• Not only does this approach provide a generic 
representation of all primitives, but it also allows 
our model to explore all possible realizations of a 
primitive concurrently.

•  Permutation Invariant Denoising
• We employ the DiT architecture and simply omit 

positional encodings. Since, all the attention and 
feed-forward blocks are permutation equivariant, 
the model is as well.

• Given the predicted noiseless sketch, each 
primitive is independently denoised with respect to 
its noiseless counterpart. This makes the denoising 
process invariant to the relative primitive orderings.

Architecture

Quantitative Results

Training and Inference

Qualitative Comparison

Fig 1. The blue line depicts the probability of the class label remaining unchanged, computed using Monte-
Carlo estimation with 10,000 samples. Left: The cosine variance schedule is used directly. Right: The cosine 
schedule is augmented, resulting in information degrading more gradually.

For continuous variables (𝒙) we employ standard Gaussian diffusion, whereas for 
discrete variables (𝒚) we use Gaussian-Softmax diffusion. Accordingly, we employ 
MSE loss for parameters and CE loss for class labels.

Samples from SketchGraphs Dataset

Samples from SketchDNN (Ours)

Samples from Vitruvion (Previous SOA)
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