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2D sketch/blueprint design is a tedious and manual aspect of CAD modelling that is an
Ideal domain for generative Al.
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Quantitative Results
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Prior solutions have relied on tokenization and autoregressive approaches, which can’t
accommodate both the heterogeneous parameterizations nor permutation invariance of  04-
primitives.
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e SketchDNN (Ours) 81.33 5.08

We propose a novel discrete diffusion method that addresses these limitations through 00-
superposition and permutation invariant denoising. Our contributions are namely: 00 0> 04 06 08 0
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a The first data-space diffusion model for CAD sketch SketchDNN (Pos.) 83.03
generation Fig 1. The blue line depicts the probability of the class label remaining unchanged, computed using Monte- SketchDNN (Cat.) 106.10 6.63

Carlo estimation with 10,000 samples. Left: The cosine variance schedule is used directly. Right: The cosine

: SR : : Vitruvion 84.80 8.19
e A novel discrete diffusion framework based on the schedule is augmented, resulting in information degrading more gradually. SketahGen 58 9 o 60
Gaussian-Softmax distribution Architecture
e State'Of'the'art I’eSUltS IN terms Of NLL, FID, and 0: Constructible Boolean ° Heterogeneous Primitive Parameterizations m FID 10Kl Reca"T
Recall « We represent each primitive as a superposition SketchDNN (Ours) 7.80 0.246 0.266
(probabilistic mixture) of all primitive types. SketchDNN (Pos) 10.26 0.230 0.245
Gaussian-Softmax Distribution * Not only does this approach provide a generic Latent Diffusion 93.34 0.134 0.033
representation of all primitives, but it also allows
We introduce the Gaussian-Softmax distribution (&) as a continuous relaxation of the our model to explore all possible realizations of a SketchDNN (Cat.) 148.93 0.117 0.028
Categorical distribution, where if y ~ N(u, 021) then x = softmax{y} ~ gs(p, 021) with primitive concurrently. Vitruvion 16.04 0.294 0.176
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) , 1| R P o\ 2 - Cirele Pararmetors * We employthe DiT architecture and simply omit
p()"ﬂ» I) Z(o)~ (Hl 13’1) €Xp\ 732 |y — K| - 5(1 ()’ — ll)) 12:? positional encodings. Since, all the attention and S o § SketchGraphs D
- 13' feed-forward blocks are permutation equivariant, amples from SketchGraphs Dataset
/ - X .
where Z(O') — \/D(ZT[O'Z)(D_D, n=u-— (HD)l’ 57 — logy — (logyD)l | 0 the modelis as well. o )
14: yO Arc Parameters / \ T
The support of the G§ distribution is the entire probability simplex, unlike the Categorical 155 . * Given the predicted noiseless sketch, each ( . )
distribution whose support is only its vertices, which enables x to encode uncertainty. 103y, primitive Is independently denoised with respect to
17: k Its noiseless counterpart. This makes the denoising h | / \ /
. . . 18: X Point Parameters process invariant to the relative primitive orderings. ' —— -
Discrete Diffusion \ 19y ) |
Training and Inference @rermrmsrmenaenenaennaeos 9 i VAR N
f \ s s
Forward: x; = SOftmaX*Jbt log X + J(l - bt) €r~Gd («/ ¢ log X, (1 - bt) 1) For continuous variables (x) we employ standard Gaussian diffusion, whereas for § ( ' )
\ / discrete variables (y) we use Gaussian-Softmax diffusion. Accordingly, we employ = G---------------=mmmmeo-d \v/ \/
( \ MSE loss for parameters and CE loss for class labels. -
)\/be(1=b¢—1) log(¥0)+ [ be—1(1=by) log(x( (x,)) (1-b)(1=be—1) _\ Algorithm 1 Training Procedure Samples from Vitruvion (Previous SOA)
Reverse: x;_; = softmax = + = € . : : : : : : —
\ 1—b, 1—b, J Require: Data with continuous and discrete information (xo||yo), Denoiser
model My(X), variance schedule @, augmented variance schedule b _ |
Thus, when entropy is maximized at the end of the forward process, the class label 1: while not converged do
. S 1 o o 2: Sample timestep ¢t ~ U(1,T) O : O
follows the uniform distribution i.e., argmax{xr} ~ Cat (5). To avoid singularities near 3. Add noise to parameters and labels ||y, = forward(zo||yo, t)
t = 0, we slightly label smooth xy so that: Xy = kxy + 1%’( 1 where we set k = .99 — - o \ ‘
. CUtHyt ~ N (\/a_t.fb'o, (]. — Et) I) X QS (\/;tlog Yo, (]. — bt) I) \\\\
X0 Xt+c xT N
m— 4: Reconstruct original sketch (z'||y") = My(x¢||ye, t) Q
o 5: Mask out irrelevant parameters in 2’ according to true class label yg
— . l - mm .-- ..l.. z' < mask(z’, yo)
[.001.995 .001.001.001] [0.2 0.6 .025 .075 0.1] [0.31 0.3 0.19 0.1 0.1] [0.2 0.2 0.22 0.19 0.19] . , , Samples from SketchDNN (Ours)
6: Compute reconstruction loss: MSFE(x', xo) + CE(Y, y0)
7: Update 6 using gradient descent @
Va riance SChedUle Augmentathn Algorithm 2 Inference Procedure
Require: Denoiser model My(V, £), Random seed zr||yr ~ N (0,1)xGS (0,1)
In Gaussian-Softmax diffusion, we observed that variance schedules cannot be used directly 1: fort=T—-1to1do
as-is, due to the distortion introduced by the softmax operation on the injected noise. To rectify 2 Predict noiseless datapoint (@'lly") = Mo (x:||y:,t) o
this, we propose the following variance schedule augmentation: 3: Weight parameters in &’ by corresponding label confidence in 3, rescaled
such that the maximum element is exactly 1
1. _ f(at)z _ 1_y / / / /
b, = [TCAYI(3E where f(y) = log ((D—l)y+1) T <« x' *xy /max(y’)
which ensures that the class label is noised according to the chosen schedule q; i.e., 4: Interpolate noisy data with prediction according to the reverse transition

argmax{x;} ~ Cat (Etxo +(1-a,) %)

Ti—1|ys—1 = reverse(x||ys, ||y, 1)
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